Abstract
The sequential firing of neurons in central pattern generators (CPGs) is generally thought to be a result of an interaction between intrinsic cellular and synaptic properties of the component neurons. Due to experimental limitations, it is usually difficult to address the role of each of these properties separately. We have done so by using the crustacean stomatogastric CPG and the dynamic clamp technique to measure how the network responds to the selective modification of an individual important synapse. Our results show that the burst periods and the phase lags between the constrictor (LP) and dilator (PD) neurons across preparations showed significant variability during equivalent experimental manipulations. Despite this variability, the ratio between the change in the burst period and the change in the phase lag between the same neurons was tightly preserved in all preparations, revealing a dynamical invariant in the system. This dynamical invariant was preserved despite the individual variability in the period and phase lag measurements, suggesting a tightly regulated constraint between the parameters of the network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.