Abstract
Animals such as the armadillo and pangolin have natural armor as a mechanical form of protection from predators. Among the several types of armor that exist in nature, structures composed of thin elastomeric substrates with overlapping hard scales can shield underlying soft tissues from physical impacts and localized stresses while maintaining a level of mechanical compliance necessary for natural motions. Here, we design and fabricate a class of artificial armor that derives inspiration from these natural systems. The optimization process involves systematic tests of several design candidates to assess their mechanical stability against different types of mechanical stresses. The resulting platforms provide highly effective protection layers for wearable electronic devices and soft robotic systems with little constraint on their functionality, as demonstrated with representative devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.