Abstract

The diet of an individual is a result of the availability of dietary items and the individual's foraging skills and preferences. Behavioural differences may thus influence diet variation, but the evolvability of diet choice through behavioural evolution has not been studied. We used experimental evolution combined with a field enclosure experiment to test whether behavioural selection leads to dietary divergence. We analysed the individual dietary niche via stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) in the hair of an omnivorous mammal, the bank vole, from four lines selected for predatory behaviour and four unselected control lines. Predatory voles had higher hair δ15N values than control voles, supporting our hypothesis that predatory voles would consume a higher trophic level diet (more animal versus plant foods). This difference was significant in the early but not the late summer season. The δ13C values also indicated a seasonal change in the consumed plant matter and a difference in food sources among selection lines in the early summer. These results imply that environmental factors interact with evolved behavioural tendencies to determine dietary niche heterogeneity. Behavioural selection thus has potential to contribute to the evolution of diet choice and ultimately the species' ecological niche breadth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.