Abstract

[structure: see text] The recognition of dopamine in water has been achieved with tripodal oxazoline-based artificial receptors, capable of providing a preorganized hydrophobic environment by rational design, which mimics a hydrophobic pocket predicted for a human D2 receptor. The receptors show an amphiphilic nature owing to the presence of hydrophilic sulfonate groups at the periphery of the tripodal oxazoline ligands, which seems to contribute in forming the preorganized hydrophobic environment. The artificial receptors recognized dopamine hydrochloride in water with reasonable selectivity among various organoammonium guests examined. The observed binding behavior of the receptors was explained by evoking guest inclusion in the preorganized hydrophobic pocket-like environment and not by simple ion-pairing interactions. The rationally predicted 1:1 inclusion binding mode was supported by binding studies such as with a reference receptor that cannot provide a similar binding pocket, Job and VT-NMR experiments, electrospray ionization mass analysis, and guest selectivity data. This study implies that an effective hydrophobic environment can be generated even from an acyclic, small molecular artificial receptor. Such a preorganized hydrophobic environment, as being utilized in biological systems, can be effectively used as a complementary binding force for the recognition of organoammonium guests such as dopamine hydrochloride in water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.