Abstract

BackgroundIn this study the physiological implications of artificial rearing were investigated. Low (LBW) and normal birth weight (NBW) piglets were compared as they might react differently to stressors caused by artificial rearing. In total, 42 pairs of LBW and NBW piglets from 16 litters suckled the sow until d19 of age or were artificially reared starting at d3 until d19 of age. Blood and tissue samples that were collected after euthanasia at 0, 3, 5, 8 and 19 d of age. Histology, ELISA, and Ussing chamber analysis were used to study proximal and distal small intestine histo-morphology, proliferation, apoptosis, tight junction protein expression, and permeability. Furthermore, small intestine, liver and systemic redox parameters (GSH, GSSG, GSH-Px and MDA) were investigated using HPLC.ResultsLBW and NBW artificially reared piglets weighed respectively 40 and 33% more than LBW and NBW sow-reared piglets at d19 (P < 0.01). Transferring piglets to a nursery at d3 resulted in villus atrophy, increased intestinal FD-4 and HRP permeability and elevated GSSG/GSH ratio in the distal small intestine at d5 (P < 0.05). GSH concentrations in the proximal small intestine remained stable, while they decreased in the liver (P < 0.05). From d5 until d19, villus width and crypt depth increased, whereas PCNA, caspase-3, occludin and claudin-3 protein expressions were reduced. GSH, GSSG and permeability recovered in artificially reared piglets (P < 0.05).ConclusionThe results suggest that artificial rearing altered the morphology, permeability and redox state without compromising piglet performance. The observed effects were not depending on birth weight.

Highlights

  • In this study the physiological implications of artificial rearing were investigated

  • We aimed to investigate the impact of artificial rearing on piglet performance, proximal and distal small intestinal (SI) morphology, mitosis, apoptosis, and tight junction protein expression, permeability, and SI, liver and systemic redox state development compared to conventional rearing

  • Body weight of piglets Average body weight of low birth weight (LBW) and normal birth weight (NBW) piglets sampled at birth (d0) was 0.77 ± 0.07 and 1.29 ± 0.08 kg, respectively (Fig. 1)

Read more

Summary

Introduction

In this study the physiological implications of artificial rearing were investigated. Vergauwen et al Journal of Animal Science and Biotechnology (2017) 8:30 observed that mRNA expression of occludin, heme oxygenase 1, catalase, thioredoxin reductase genes and occludin protein expression continued to be lower in LBW pigs during the suckling period [21] This apparently conflicts with the observation that LBW piglets that survive the critical first days after birth show an intestinal morphology, digestive capacity, cytokine production, intestinal motility and permeability that is comparable with those seen in normal birth weight (NBW) littermates [22,23,24]. It is unknown at present if the response to artificial rearing, since it includes similar stressors as conventional weaning, is different in LBW piglets—which have a lower antioxidant capacity [21]—compared to NBW piglets

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call