Abstract

In this paper, a new bio-inspired meta-heuristic algorithm, named artificial rabbits optimization (ARO), is proposed and tested comprehensively. The inspiration of the ARO algorithm is the survival strategies of rabbits in nature, including detour foraging and random hiding. The detour foraging strategy enforces a rabbit to eat the grass near other rabbits’ nests, which can prevent its nest from being discovered by predators. The random hiding strategy enables a rabbit to randomly choose one burrow from its own burrows for hiding, which can decrease the possibility of being captured by its enemies. Besides, the energy shrink of rabbits will result in the transition from the detour foraging strategy to the random hiding strategy. This study mathematically models such survival strategies to develop a new optimizer. The effectiveness of ARO is tested by comparison with other well-known optimizers by solving a suite of 31 benchmark functions and five engineering problems. The results show that ARO generally outperforms the tested competitors for solving the benchmark functions and engineering problems. ARO is applied to the fault diagnosis of a rolling bearing, in which the back-propagation (BP) network optimized by ARO is developed. The case study results demonstrate the practicability of the ARO optimizer in solving challenging real-world problems. The source code of ARO is publicly available at https://seyedalimirjalili.com/aro and https://ww2.mathworks.cn/matlabcentral/fileexchange/110250-artificial-rabbits-optimization-aro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.