Abstract

Artificial multidomain proteins with enhanced structural and functional properties can be utilized in a broad spectrum of applications. The design of chimeric fusion proteins utilizing protein domains or one-domain miniproteins as building blocks is an important advancement for the creation of new biomolecules for biotechnology and medical applications. However, computational studies to describe in detail the dynamics and geometry properties of two-domain constructs made from structurally and functionally different proteins are lacking. Here, we tested an in silico design strategy using all-atom explicit solvent molecular dynamics simulations. The well-characterized PDZ3 and SH3 domains of human zonula occludens (ZO-1) (3TSZ), along with 5 artificial domains and 2 types of molecular linkers, were selected to construct chimeric two-domain molecules. The influence of the artificial domains on the structure and dynamics of the PDZ3 and SH3 domains was determined using a range of analyses. We conclude that the artificial domains can function as allosteric modulators of the PDZ3 and SH3 domains. Proteins 2016; 84:1358-1374. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.