Abstract

A frequent cause of auto accidents is disregarding the proximal traffic of an ego-vehicle during lane changing. Presumably, in a split-second-decision situation we may prevent an accident by predicting the intention of a driver before her action onset using the neural signals data, meanwhile building the perception of surroundings of a vehicle using optical sensors. The prediction of an intended action fused with the perception can generate an instantaneous signal that may replenish the driver's ignorance about the surroundings. This study examines electromyography (EMG) signals to predict intention of a driver along perception building stack of an autonomous driving system (ADS) in building an advanced driving assistant system (ADAS). EMG are classified into left-turn and right-turn intended actions and lanes and object detection with camera and Lidar are used to detect vehicles approaching from behind. A warning issued before the action onset, can alert a driver and may save her from a fatal accident. The use of neural signals for intended action prediction is a novel addition to camera, radar and Lidar based ADAS systems. Furthermore, the study demonstrates efficacy of the proposed idea with experiments designed to classify online and offline EMG data in real-world settings with computation time and the latency of communicated warnings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.