Abstract

Although S-scheme artificial photosynthesis shows promise for photocatalytic hydrogen production, traditional methods often overly concentrate on a single reduction site. This limitation results in inadequate redox capability and inefficient charge separation, which hampers the efficiency of the photocatalytic hydrogen evolution reaction. To overcome this limitation, a double S-scheme system is proposed that leverages dual reduction sites, thereby preserving energetic photo-electrons and holes to enhance apparent quantum efficiency. The design features a double S-scheme junction consisting of CdS nanospheres decorated with anatase TiO2 nanoparticles coupled with graphitic C3 N4 . The as-prepared catalyst exhibits a hydrogen evolution rate of 26.84mmolg-1 h-1 and an apparent quantum efficiency of 40.2% at 365 nm. This enhanced photocatalytic hydrogen evolution is ascribed to the efficient charge separation and transport induced by the double S-scheme. Both theoretical calculations and comprehensive spectroscopy tests (both insitu and exsitu) affirm the efficient charge transport across the catalyst interface. Moreover, substituting the reduction-type catalyst CdS with other similar sulfides like ZnIn2 S4 , ZnS, MoS2 and In2 S3 further confirms the feasibility of the proposed double S-scheme configuration. The findings provide a pathway to designing more effective double S-scheme artificial photosynthetic systems, opening up fresh perspectives in enhancing photocatalytic hydrogen evolution performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call