Abstract

BackgroundArtificial ovary (AO) is an alternative approach to provide physiological hormone to post-menopausal women. The therapeutic effects of AO constructed using alginate (ALG) hydrogels are limited by their low angiogenic potential, rigidity, and non-degradability. To address these limitations, biodegradable chitin-based (CTP) hydrogels that promote cell proliferation and vascularization were synthesized, as supportive matrix.MethodsIn vitro, follicles isolated from 10–12-days-old mice were cultured in 2D, ALG hydrogels, and CTP hydrogels. After 12 days of culture, follicle growth, steroid hormone levels, oocyte meiotic competence, and expression of folliculogenesis-related genes were monitored. Additionally, follicles isolated from 10–12-days-old mice were encapsulated in CTP and ALG hydrogels and transplanted into the peritoneal pockets of ovariectomised (OVX) mice. After transplantation, steroid hormone levels, body weight, rectal temperature, and visceral fat of the mice were monitored every two weeks. At 6 and 10 weeks after transplantation, the uterus, vagina, and femur were collected for histological examination.ResultsThe follicles developed normally in CTP hydrogels under in vitro culture conditions. Additionally, follicular diametre and survival rate, oestrogen production, and expression of folliculogenesis-related genes were significantly higher than those in ALG hydrogels. After one week of transplantation, the numbers of CD34-positive vessels and Ki-67-positive cells in CTP hydrogels were significantly higher than those in ALG hydrogels (P < 0.05), and the follicle recovery rate was significantly higher in CTP hydrogels (28%) than in ALG hydrogels (17.2%) (P < 0.05). After two weeks of transplantation, OVX mice implanted with CTP grafts exhibited normal steroid hormone levels, which were maintained until week eight. After 10 weeks of transplantation, CTP grafts effectively ameliorated bone loss and atrophy of the reproductive organs, as well as prevented the increase in body weight and rectal temperature in OVX mice, which were superior to those elicited by ALG grafts.ConclusionsOur study is the first to demonstrate that CTP hydrogels support follicles longer than ALG hydrogels in vitro and in vivo. The results highlight the clinical potential of AO constructed using CTP hydrogels in the treatment of menopausal symptoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call