Abstract
Oil and Gas industry is one of the renowned industries where prediction and forecasting of necessary oil statistics is important from both the productive and economic perspective. Artificial lift methods are being used to increase the production rate. Even if the natural pressure is appropriate at the bottom well head, we do depend on artificial lift mech-anisms like beam pumping, hydraulic pumping, ESPs (Electronic Submersible pumps) and gas lifts to artificially pump oil up the surface. ESPs is most commonly used method for the purpose. IIOT devices and sensors have been established for monitoring the bottom well pressure, amount of oil produced, the temperature of the wellhead etc. All these data are in the form of time series which are analyzed using time series algorithms for predicting the future production beforehand. This study presents an application of an Autoregressive model to estimate the future production performance of oil wells based on monthly-production time series data. Deep learning Model (LSTM) is applied to get more accuracy in prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.