Abstract
Current clinical diagnostics are based on biochemical, immunological, or microbiological methods. However, these methods are operator dependent, time-consuming, expensive, and require special skills, and are therefore, not suitable for point-of-care testing. Recent developments in gas-sensing technology and pattern recognition methods make electronic nose technology an interesting alternative for medical point-of-care devices. An electronic nose has been used to detect urinary tract infection from 45 suspected cases that were sent for analysis in a U.K. Public Health Registry. These samples were analyzed by incubation in a volatile generation test tube system for 4-5 h. Two issues are being addressed, including the implementation of an advanced neural network, based on a modified expectation maximization scheme that incorporates a dynamic structure methodology and the concept of a fusion of multiple classifiers dedicated to specific feature parameters. This study has shown the potential for early detection of microbial contaminants in urine samples using electronic nose technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Information Technology in Biomedicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.