Abstract
Nanomagnetism and spintronics are currently active areas of research, with one of the main goals being the creation of low-energy-consuming magnetic memories based on nanomagnet switching. These types of devices could also be implemented in neuromorphic computing by crafting artificial neurons (ANs) that emulate the characteristics of biological neurons through the implementation of neuron models such as the widely used leaky integrate-and-fire (LIF) with a refractory period. In this study, we have carried out numerical simulations of a 120 nm diameter, 250 nm length ferromagnetic nanowire (NW) with the aim of exploring the design of an artificial neuron based on the creation and destruction of a Bloch-point domain wall. To replicate signal integration, we applied pulsed trains of spin currents to the opposite faces of the ferromagnetic NW. These pulsed currents (previously studied only in the continuous form) are responsible for inducing transitions between the stable single vortex (SV) state and the metastable Bloch point domain wall (BP-DW) state. To ensure the system exhibits leak and refractory properties, the NW was placed in a homogeneous magnetic field of the order of mT in the axial direction. The suggested configuration fulfills the requirements and characteristics of a biological neuron, potentially leading to the future creation of artificial neural networks (ANNs) based on reversible changes in the topology of magnetic NWs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.