Abstract

Artificial Neural Networks (ANNs) have demonstrated very interesting properties in adaptive identification schemes and control laws. In this work, they are employed for the on-line control strategy of an Active Power Filter (APF) in order to improve its performance. Indeed, neural-based approaches are synthesized to design adaptive and efficient harmonic identification schemes. The proposed neural approaches are employed for compensating for the changing harmonic distortions introduced in a power distribution system by unknown nonlinear loads. The implementation of the ANNs has been optimized on a digital signal processor for real-time experiments. The feasibility of the implementation has been validated and the neural compensation schemes exhibit good performances compared to conventional approaches. By their learning capabilities, ANNs are able to take into account time-varying parameters such as voltage sags and harmonic content changes, and thus appreciably improve the performance of the APF compared to the one obtained with traditional compensating methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call