Abstract

Artificial neural network (ANN) models for water loss (WL) and solid gain (SG) were evaluated as potential alternative to multiple linear regression (MLR) for osmotic dehydration of apple, banana and potato. The radial basis function (RBF) network with a Gaussian function was used in this study. The RBF employed the orthogonal least square learning method. When predictions of experimental data from MLR and ANN were compared, an agreement was found for ANN models than MLR models for SG than WL. The regression coefficient for determination (R2) for SG in MLR models was 0.31, and for ANN was 0.91. The R2 in MLR for WL was 0.89, whereas ANN was 0.84.Osmotic dehydration experiments found that the amount of WL and SG occurred in the following descending order: Golden Delicious apple > Cox apple > potato > banana. The effect of temperature and concentration of osmotic solution on WL and SG of the plant materials followed a descending order as: 55 > 40 > 32.2C and 70 > 60 > 50 > 40%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.