Abstract
Among different biological methods used for advanced wastewater treatment, membrane bioreactors have demonstrated superior efficiency due to their hybrid nature, combining biological and physical processes. However, their efficient operation and control remain challenging due to their complexity. This comprehensive review summarizes the potential of artificial neural networks (ANNs) to monitor, simulate, optimize, and control these systems. ANNs show a unique ability to reveal and simulate complex relationships of dynamic systems such as MBRs, allowing for process optimization and fault detection. This early warning system leads to increased reliability and performance. Integrating ANNs with advanced algorithms and implementing Internet of Things (IoT) devices and new-generation sensors has the potential to transform the advanced wastewater treatment landscape towards the development of smart, self-adaptive systems. Nevertheless, several challenges must be addressed, including the need for high-quality and large-quantity data, human resource training, and integration into existing control system facilities. Since the demand for advanced water treatment and water reuse will continue to expand, proper implementation of ANNs, combined with other AI tools, is an exciting strategy toward the development of integrated and efficient advanced water treatment schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.