Abstract

This paper presents the results from two supervised Artificial Neural Networks (ANN) developed for the spalling classification and failure prediction of high strength concrete columns (HSCC) subjected to fire. The experimental test data used for the ANN are based on the HSCC tests undertaken at the Fire Research Laboratories at the University of Ulster. 80% of the chosen experimental test data was used to train the network with the remaining 20% used for testing. In the spalling classification example the key ANN input parameters were; furnace temperature, restraint, loading level, force, spalling degree, failure time and spalling type. This was also the case for the failure prediction example except for spalling type. The networks were trained using the resilient propagation algorithm. A 6-10-3 and 5-10-1 ANN architecture gave the best results for the classification and failure prediction times respectively. The results demonstrate that HSCC can be assessed using ANN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.