Abstract

This paper is a study of the value of applying artificial neural networks (ANNs), specifically a multilayer perceptron (MLP), to identification of higher plants using morphological characters collected by conventional means. A practical methodology is thus demonstrated to enable botanical or zoological taxonomists to use ANNs as advisory tools for identification purposes. A comparison is made between the ability of the neural network and that of traditional methods for plant identification by means of a case study in the flowering plant genus Lithops N.E. Brown (Aizoaceae). In particular, a comparison is made with taxonomic keys generated by means of the DELTA system. The ANN is found to perform better than the DELTA key generator, for conditions where the available data is limited, and species relatively difficult to distinguish.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.