Abstract

Upland vegetation represents an important resource that requires frequent monitoring. However, the heterogeneous nature of upland vegetation and lack of ground data require classification techniques that have a high degree of generalization ability. This study investigates the use of artificial neural networks as a means of mapping upland vegetation from remotely sensed data. First, the optimum size of support to map upland vegetation was estimated as being less than 4 m, which suggested that soft classification techniques and high spatial resolution IKONOS imagery were required. The use of high spatial resolution imagery for regional‐scale areas has introduced new challenges to the remote sensing community, such as using limited ground data and mapping land‐cover dynamics and variation over large areas. This work then investigated the utility of artificial neural networks (ANN) for regional‐scale upland vegetation from IKONOS imagery using limited ground data and to map unseen data from remote geographical locations. A Multiple Layer Perceptron was trained with pixels from an IKONOS image using early stopping; however, despite high classification accuracies when calculated for pixels from an area where training pixels were extracted, the networks did not produce high accuracies when applied to unseen data from a remote area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.