Abstract

Neural models for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines, based on the multilayered perceptrons (MLPs), are presented. Six learning algorithms, bayesian regulation (BR), Levenberg-Marquardt (LM), quasi-Newton (QN), scaled conjugate gradient (SCG), resilient propagation (RP), and conjugate gradient of Fletcher-Powell (CGF), are used to train the MLPs. The characteristic impedance results obtained by using neural models are in very good agreement with the results available in the literature. When the performances of neural models are compared with each other, the best test result is obtained from the MLPs trained by the BR algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.