Abstract
Obstructive sleep apnea (OSA) is a serious disorder characterized by intermittent events of upper airway collapse during sleep. Snoring is the most common nocturnal symptom of OSA. Almost all OSA patients snore, but not all snorers have the disease. Recently, researchers have attempted to develop automated snore analysis technology for the purpose of OSA diagnosis. These technologies commonly require, as the first step, the automated identification of snore/breathing episodes (SBE) in sleep sound recordings. Snore intensity may occupy a wide dynamic range (>95 dB) spanning from the barely audible to loud sounds. Low-intensity SBE sounds are sometimes seen buried within the background noise floor, even in high-fidelity sound recordings made within a sleep laboratory. The complexity of SBE sounds makes it a challenging task to develop automated snore segmentation algorithms, especially in the presence of background noise. In this paper, we propose a fundamentally novel approach based on artificial neural network (ANN) technology to detect SBEs. Working on clinical data, we show that the proposed method can detect SBE at a sensitivity and specificity exceeding 0.892 and 0.874 respectively, even when the signal is completely buried in background noise (SNR <0 dB). We compare the performance of the proposed technology with those of the existing methods (short-term energy, zero-crossing rates) and illustrate that the proposed method vastly outperforms conventional techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.