Abstract
This study presents a real-time method for determining the thickness of each layer in multilayer thin films. Artificial neural networks (ANNs) were introduced to estimate thicknesses from a transmittance spectrum. After training via theoretical spectra which were generated by thin-film optics and modified by noise, ANNs were applied to estimate the thicknesses of four-layer nanoscale films which were TiO2, Ag, Ti, and TiO2 thin films assembled sequentially on polyethylene terephthalate (PET) substrates. The results reveal that the mean squared error of the estimation is 2.6 nm2, and is accurate enough to monitor film growth in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.