Abstract
Super-computing or HPC clusters are built to provide services to execute computationally complex applications. Generally, these HPC applications involve large scale IO (input/output) processing over the networked parallel file system disks. They are commonly developed on top of the C/C++ based MPI standard library. The HPC clusters MPI–IO performance significantly depends on the particular parameter value configurations, not generally considered when writing the algorithms or programs. Therefore, this leads to poor IO and overall program performance degradation. The IO is mostly left to individual practitioners to be optimised at code level. This usually leads to unexpected consequences due to IO bandwidth degradation which becomes inevitable as the file data scales in size to petabytes. To overcome the poor IO performance, this research paper presents an approach for auto-tuning of the configuration parameters by forecasting the MPI–IO bandwidth via artificial neural networks (ANNs), a machine learning (ML) technique. These parameters are related to MPI–IO library and lustre (parallel) file system. In addition to this, we have identified a number of common configurations out of numerous possibilities, selected in the auto-tuning process of READ/WRITE operations. These configurations caused an overall READ bandwidth improvement of 65.7% with almost 83% test cases improved. In addition, the overall WRITE bandwidth improved by 83% with number of test cases improved by almost 93%. This paper demonstrates that by using auto-tuning parameters via ANNs predictions, this can significantly impact overall IO bandwidth performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.