Abstract
ABSTRACT Energy production from natural gas has considerably increased worldwide. The composition of natural gas is diverse, and each blend has a different reactivity. Understanding the reactivities of these fuels enables the designer to develop fuel-source independent combustors. Also, future engines such as scramjet and homogeneous charge compression ignition (HCCI) will rely heavily on the reactivity of the fuel. Ignition delay time (IDT) is a direct measure of a fuel’s reactivity. In the current study, an artificial neural network (ANN) based model is developed to predict the IDT of different natural gas blends. The model has 13 inputs and three hidden layers and is trained using a back-propagation approach. The developed model is superior compared to a multiple linear regression approach and is validated with shock tube experiments. Furthermore, the model is used to predict the IDT of six different liquified natural gas blends (LNG), and the predicted results match the experimental data accurately. Additionally, the IDTs of four different commercial natural gas blends are predicted using the ANN model, showcasing the application of the tool in a real-world scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.