Abstract
The need for renewable energy is increasing day by day due to different factors such as increasing energy demand, environmental considerations as well as the will to decrease the share of fossil fuel-based generation. Due to their relative low-cost and ease of installation, PV systems are leading the way for renewable energy deployments around the globe. However, there are meticulous studies that need to be undertaken for realization of such projects. Studying local weather and load patterns for proper panel sizing or considering grid components to determine cable and transformer sizing can be named as some examples for pre-installation studies. In addition to these, post-installation impact studies, e.g. accurate harmonic analysis contribution, is more important to ensure safe and secure operation of the overall system. These steps need to be taken for all PV installation projects. The aim of this study is to show a step-by-step analysis of the effect of a real PV system on the network and to improve the prediction and give a new perspective to the harmonic estimation by using the hourly temperature and radiation data together. At the first phase of the study, a detail real-time 250 kW PV system was modeled for real university campus, and then harmonic estimation based on hourly solar irradiation and hourly temperature was performed with artificial neural networks (ANN) and nonlinear autoregressive exogenous (NARX). The accuracy of the prediction made with ANN was 0.98, and the accuracy of the prediction made with NARX was 0.96.Researchers in PV sizing and control field as well as engineers in power quality area would find these findings beneficial and useful. Use of ANNs and NARX for such analysis indicates the trend in this field that can be targeted by new research projects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.