Abstract

With many branch lines in radiant distribution networks, diagnosing faults in a distribution network is very difficult. It is of great significance to identify different types of faults quickly and accurately for the stable operation of the power grid. This research presents a fault identification model for a distribution network based on artificial neural networks. The principal component analysis first extracts features from transitory data in a distribution network. The resulting low-dimensional data is subsequently used to update the artificial neural network model. The artificial neural network may also identify the type of fault. The proposed model’s fault detection accuracy is improved over the traditional approach by examining distribution network fault data during the simulation test.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.