Abstract

A study is presented to compare the performance of bearing fault detection using two different classifiers, namely, artificial neural networks (ANNs) and support vector machines (SMVs). The time-domain vibration signals of a rotating machine with normal and defective bearings are processed for feature extraction. The extracted features from original and preprocessed signals are used as inputs to the classifiers for two-class (normal or fault) recognition. The classifier parameters, e.g., the number of nodes in the hidden layer in case of ANNs and the radial basis function kernel parameter (width) in case of SVMs along with the selection of input features are optimized using genetic algorithms. The classifiers are trained with a subset of the experimental data for known machine conditions and are tested using the remaining set of data. The procedure is illustrated using the experimental vibration data of a rotating machine. The roles of different vibration signals and signal preprocessing techniques are investigated. The results show the effectiveness of the features and the classifiers in detection of machine condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.