Abstract

Determination of soaked california bearing ratio (CBR) and compaction characteristics of soils in the laboratory require considerable time and effort. To make a preliminary assessment of the suitability of soils required for a project, prediction models for these engineering properties on the basis of laboratory tests—which are quick to perform, less time consuming and cheap—such as the tests for index properties of soils, are preferable. Nevertheless researchers hold divergent views regarding the most influential parameters to be taken into account for prediction of soaked CBR and compaction characteristics of fine-grained soils. This could be due to the complex behaviour of soils—which, by their very nature, exhibit extreme variability. However this disagreement is a matter of concern as it affects the dependability of prediction models. This study therefore analyses the ability of artificial neural networks and multiple regression to handle different influential parameters simultaneously so as to make accurate predictions on soaked CBR and compaction characteristics of fine-grained soils. The results of simple regression analyses included in this study indicate that optimum moisture content (OMC) and maximum dry density (MDD) of fine-grained soils bear better correlation with soaked CBR of fine-grained soils than plastic limit and liquid limit. Simple regression analyses also indicate that plastic limit has stronger correlation with compaction characteristics of fine-grained soils than liquid limit. On the basis of these correlations obtained using simple regression analyses, neural network prediction models and multiple regression prediction models—with varying number of input parameters are developed. The results reveal that neural network models have more ability to utilize relatively less influential parameters than multiple regression models. The study establishes that in the case of neural network models, the relatively less powerful parameters—liquid limit and plastic limit can also be used effectively along with MDD and OMC for better prediction of soaked CBR of fine-grained soils. Also with the inclusion of less significant parameter—liquid limit along with plastic limit the predictions on compaction characteristics of fine-grained soils using neural network analysis improves considerably. Thus in the case of neural network analysis, the use of relatively less influential input parameters along with stronger parameters is definitely beneficial, unlike conventional statistical methods—for which, the consequence of this approach is unpredictable—giving sometimes not so favourable results. Very weak input parameters alone need to be avoided for neural network analysis. Consequently, when there is ambiguity regarding the most influential input parameters, neural network analysis is quite useful as all such influential parameters can be taken to consideration simultaneously, which will only improve the performance of neural network models. As soils by their very nature, exhibit extreme complexity, it is necessary to include maximum number of influential parameters—as can be determined easily using simple laboratory tests—in the prediction models for soil properties, so as to improve the reliability of these models—for which, use of neural networks is more desirable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.