Abstract

ABSTRACTThe objective of this study was to evaluate the effect of milling time, milling speed and particle size of initial powders on the coating thickness of Fe-Al intermetallic coating by using artificial neural network (ANN). Coating morphology and cross-section microstructures were evaluated using a scanning electron microscope (SEM). It was found that an increase in the milling time provided an increase in the coating-layer thickness due to the cold welding process between particles and the steel substrate. The microstructure of the coating surface was refined by ball impacts in the milling process. As a result of this study, the ANN was found to be successful for predicting the coating thickness of Fe-Al intermetallic coatings. The correlation between the predicted values and the experimental data of the feed-forward back-propagation ANN was quite adequate. The mean absolute percentage error (MAPE) for the predicted values didn’t exceed 7.46%. The ANN model can be used for predicting the coating thickness of Fe-Al intermetallic coating produced for different milling time, milling speed and particle size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call