Abstract
This study reports grain boundary (GB) energy calculations for 46 symmetric-tilt GBs in α-iron using molecular mechanics based on an artificial neural network (ANN) potential and compares the results with calculations based on the density functional theory (DFT), the embedded atom method (EAM), and the modified EAM (MEAM). The results by the ANN potential are in excellent agreement with those of the DFT (5% on average), while the EAM and MEAM significantly differ from the DFT results (about 27% on average). In a uniaxial tensile calculation of ∑3(11¯2) GB, the ANN potential reproduced the brittle fracture tendency of the GB observed in the DFT while the EAM and MEAM mistakenly showed ductile behaviors. These results demonstrate the effectiveness of the ANN potential in calculating grain boundaries of iron, which is in high demand in modern industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.