Abstract

The hot deformation behaviour of as HIPed FGH4169 superalloy was studied by single stroke compression test on MMS-200 test machine at the temperatures of 950–1050°C and the strain rates of 0·004–10 s−1. Based on the experimental results, a back-propagation artificial neural network model and constitutive equation method were established to predict the flow stress of FGH4169 superalloy. The predictability of two different models was compared. The correlation coefficients of experimental and predicted flow stress with the trained BP ANN model and constitutive equation were 0·9995 and 0·9808 respectively. The average root mean square error (RMSE) values of the trained ANN model and constitutive equation are 0·39 and 2·21 MPa respectively. And the average absolute relative error (AARE) values of the trained ANN model and constitutive equation are 1·79 and 7·47% respectively. The results showed that the ANN model is an effective tool to predict the flow stress in comparison with constitutive equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.