Abstract

In recent years, the phenomenon of urban warming has become increasingly serious, and with the number of urban residents increasing, the risk of heatstroke in extreme weather has become higher than ever. In order to mitigate urban warming and adapt to it, many researchers have been paying increasing attention to outdoor thermal comfort. The mean radiant temperature (MRT) is one of the most important variables affecting human thermal comfort in outdoor urban spaces. The purpose of this paper is to predict the distribution of MRT around buildings based on a commonly used multilayer neural network (MLNN) that is optimized by genetic algorithms (GA) and backpropagation (BP) algorithms. Weather data from 2014 to 2018 together with the related indexes of the grid were selected as the input parameters for neural network training, and the distribution of the MRT around buildings in 2019 was predicted. This study obtained very high prediction accuracy, which can be combined with sensitivity analysis methods to analyze the important input parameters affecting the MRT on hot summer days (the days with the highest air temperature over 30 °C). This has significant implications for the optimization strategies for future building and urban designers to improve the thermal conditions around buildings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.