Abstract
An experimental based artificial neural network (ANN) model is constructed to describe the performance of air gap membrane distillation process for different operating conditions. The air gap thickness, the condensation temperature, the feed inlet temperature, and the feed flow rate of salt aqueous solutions are the input variables of this process, whereas the response is the performance index, which takes into consideration both the permeate flux and the salt rejection factor. The neural network approach was found to be capable for modeling accurately this membrane distillation configuration. The overall agreement between the ANN predictions and experimental data was very good showing a correlation coefficient of 0.992. To test the statistical significance of the developed ANN model the analysis of variance (ANOVA) has been employed. According to ANOVA test, the ANN model is found to be statistically valid and can be used for the prediction of the performance index. Finally, the predictive abilities of the ANN model were ascertained by plotting the 3D generalization graphs. The optimum operating condition was determined by Monte Carlo stochastic method and the obtained optimal conditions are 3.0mm air gap thickness, 13.9°C condensation temperature, 71°C feed inlet temperature and 205L/h feed flow rate with a maximum experimental performance index of 51.075kg/m2h and a residual error less than 1%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.