Abstract

ABSTRACTA transesterification reaction was carried out employing an oil of paradise kernel (Simarouba glauca), a non-edible source for producing Simarouba glauca methyl ester (SGME) or biodiesel. In this study, the effects of three variables – reaction temperature, oil-to-alcohol ratio and reaction time – were studied and optimized using response surface methodology (RSM) and an artificial neural network (ANN) on the free fatty acid (FFA) level. Formation of methyl esters due to a reduction in FFA was observed in gas chromatography–mass spectroscopy (GC–MS) analysis. It was inferred that optimum conditions such as an oil-to-alcohol ratio of 1:6.22, temperature of 67.25 and duration of 20 h produce a better yield of biodiesel with FFA of 0.765 ± 0.92%. The fuel properties of paradise oil meet the requirements for biodiesel, by Indian standards. The results indicate that the model is in substantial agreement with current research, and simarouba oil can be considered a potential oil source for biodiesel production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.