Abstract

Carbon is the most widely used electrode for the supercapacitors. This work applies the artificial neural network (ANN) technology to predict the capacitance of carbon-based supercapacitors. For training the ANN model, we extracted data from hundreds of published papers. Moreover, five features were selected to figure out their impact on capacitance, including specific surface area, calculated pore size, ID/IG ratio, N-doping level and voltage window. Then, several carbon-based samples were chosen to evaluate the performance of ANN. As the result, comparing to other machine learning methods, such as linear regression and Lasso, ANN exhibits the best accuracy and adaptability in the capacitance predication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.