Abstract

Background and objectiveMalaria is one of the most prevalent diseases in urban areas. Malaria flourishes in sub-tropical countries and affect the public health. The impact is very high, where health monitoring facilities are very limited. To minimize the impact of malaria population in sub-tropical domains, a suitable disease prediction model is required. The objective of this study is to determine the malaria abundances using clinical and environmental variables with Big Data on the geographical location of Khammam district, Telanagana, India. MethodsPrediction model is based on the data collected from primary health centres of department of vector borne diseases (DVBD) of Khammam district and satellite data such as rain fall, relative humidity, temperature and vegetation taken for the time period of 1995–2014. In this study, we test the efficacy of the artificial neural network (ANN) for mosquito abundance prediction. Prediction model was developed for the period of 2015 using a feed forward neural network and compared with the observed values. Results and conclusionsThe results vary from area to area based on clinical variables and rainfall in the prediction model corresponding to areas. The average error of the prediction model ranges from 18% to 117%. Clinical data such as number of patients treated with symptoms and without symptoms can improve the prediction level when combined with environmental variables. We perform preliminary findings of malaria abundances by collecting clinical big data across different seasons. Further, more exploration is required in prediction of malaria using big data to improve the accuracy in real practice. In this manuscript, we perform some preliminary findings of malaria abundances by collecting larger data across different seasons. Till today, many models have been developed to examine the malaria prediction with different approaches, but malaria prediction with environmental and clinical data is a new approach with big data analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call