Abstract

In this paper, a fault detection algorithm for photovoltaic systems based on artificial neural networks (ANN) is proposed. Numerous literatures can be found on the topic of PV fault detection through the implementation of artificial intelligence. The novel part of this research is the successful development, deployment and validation of a fault detection PV system using radial basis function (RBF), requiring only two parameters as the input to the ANN (solar irradiance and output power). The results obtained through the testing of the developed ANN on a PV installation of 2.2 kW capacity, provided an accuracy of 97.9%. To endorse the accuracy of the newly developed algorithm, the ANN was tested on another PV system, installed at a remote location. The total capacity of the new system was significantly higher, 4.16 kW. A vital part of the test was to see how the proposed ANN would perform with ‘scaled-up’ input data, during normal operation as well as partial shading scenarios. The validation process provided an overall fault detection accuracy of above 97%. The decrease in accuracy was due to the varying nature of the two systems in terms of total capacity, number of samples and type of faults.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.