Abstract
In this paper, a Wireless Power Transfer (WPT) system parameter identification method that combines an artificial neural network and system modeling is presented. During wireless charging, there are two critical parameters; specifically, mutual inductance and load resistance, which change due to the movement of the transmitter/receiver and battery conditions. The identification of these two uncertain parameters is an essential prerequisite for the implementation of feedback control. The proposed method utilizes an Artificial Neural Network (ANN) to acquire a mutual inductance value. A succinct system model is formulated to calculate the load resistance of the remote receiver. The maximum error of the mutual inductance estimation is 2.93%, and the maximum error of the load resistance estimation is 7.4%. Compared to traditional methods, the proposed method provides an alternative way to obtain mutual inductance and load resistance using only primary-side information. Experimental results were provided to validate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.