Abstract
In order to increase the transceiver performance in frequency selective fading channel environment, orthogonal frequency division multiplexing (OFDM) system is used to combat inter-symbol-interference. In this work, a channel estimation scheme for an OFDM system in the presence of sparse multipath channel is studied using the artificial neural networks (ANN). By means of ANN’s learning capability, it is shown that how to model and obtain a channel estimate and how it allows the proposed technique to give a better system throughput. The performance of proposed method is compared with the Matching Pursuit (MP) and Orthogonal MP (OMP) algorithms that are commonly used in compressed sensing literature in order to estimate delay locations and tap coefficients of a sparse multipath channel. In this work, we propose a performance- efficient ANN based sparse channel estimator with lower computational cost than that of MP and OMP based channel estimators. Even though there is a slight performance lost in a few simulation scenarios in which we have lower computational complexity advantage, in most scenarios, our computer simulations corroborate that our low complexity ANN based channel estimator has better mean squared error and the corresponding symbol error rate performances comparing with MP and OMP algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.