Abstract

Reliable and computationally efficient means of classifying electrocardiogram (ECG) signals has been the subject of considerable research effort in recent years. This paper explores the potential applications of a talented, versatile computation model called the Artificial Neural Network (ANN) in the field of ECG signal classification. Two types of ANNs: Multi-Layered Feed Forward Network (MLFFN) and Probabilistic Neural Networks (PNN) are used to classify seven types of ECG beats. It includes six types of arrhythmia data and normal data. Here, parametric modeling strategies are used in conjunction with ANN classifiers to discriminate ECG signals. Instead of giving the ECG data as such, parameters such as fourth order Auto Regressive model coefficients and Spectral Entropy of the signals has been selected. On testing with the Massachusetts Institute of Technology-Beth Israel Hospital (MIT/BIH) arrhythmia database, it has been observed that PNN has better performance than conventionally used MLFFN in ECG arrhythmia classification. MLFFN with Back Propagation Algorithm gives a classification accuracy of 97.54% and PNN gives 98.96%. The classification by PNN also has an advantage that the computation time for classification is lower than that of MLFFN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call