Abstract
This article proposes a real-time algorithm for identifying the grid parameters, which is concurrently used for online tuning of the predictive controller in each iteration, in a grid-tied active front end (AFE) voltage source converter (VSC) applications. The algorithm is designed by inspiring from the concepts of the extended Kalman filter (EKF) and the model predictive control (MPC). The performance of the algorithm highly depends on the weighting factors of the algorithm. The artificial neural network (ANN)-based algorithm is used to find the optimal set of weighting factors among the ones in a parameter search block. An offline particle swarm optimization (PSO) is run to provide the data source for the parameter search block. The algorithm identifies not only the inductance but also the resistance of the grid. In addition, the hard constraints on the amplitude of the input and output variables are guaranteed. The validation of the proposed approach is performed experimentally and compared with the state-of-the-art conventional methods. The experimental results show that the proposed method could effectively stabilize the system in weak grid conditions and under wide impedance variations. In addition, the accuracy of the proposed impedance identification method is 96%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.