Abstract
This paper describes the application of an artificial neural network-based algorithm to the single-ended fault location of transmission lines using voltage and current data. From the fault location equations, similar to the conventional approach, this method selects phasors of prefault and superimposed voltages and currents from all phases of the transmission line as inputs of the artificial neural network. The outputs of the neural network are the fault position and the fault resistance. With its function approximation ability, the neural network is trained to map the nonlinear relationship existing in the fault location equations with the distributed parameter line model. It can get both fast speed and high accuracy. The influence of the remote-end infeed on neural network structure is studied. A comparison with the conventional method has been done. It is shown that the neural network-based method can adapt itself to big variations of source impedances at the remote terminal. Finally, when the remote source impedances vary in small ranges, the structure of artificial neural network has been optimized by the pruning method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.