Abstract
Isothermal compression of as-cast TC21 titanium alloy at the deformation temperatures ranging from 1000 to 1150°C with an interval of 50°C, the strain rates ranging from 0.01 to 10.0s−1 and the height reduction of 60% was conducted on a Gleeble-3500 thermo-mechanical simulator. Based on the experimental results, an artificial neural network (ANN) model with a back-propagation learning algorithm was developed to predict the flow stress in isothermal compression of as-cast TC21 titanium alloy. In the present ANN model, the strain, strain rate and deformation temperature were taken as inputs, and the flow stress as output. According to the predicted and experimental results, the maximum error and average error between the predicted flow stress and the experimental data were 4.60% and 1.58%, respectively. Comparison of the predicted results of flow stress based on the ANN model and those using the regression method, it was found that the relative error based on the ANN model varied from −1.41% to 4.60% and that was in the range from −13.38% to 10.33% using the regression method, and the average absolute relative error were 1.58% and 5.14% corresponding to the ANN model and regression method, respectively. These results have sufficiently indicated that the ANN model is more accurate and efficient in terms of predicting the flow stress of as-cast TC21 titanium alloy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.