Abstract

Background and ObjectiveThe purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors. MethodsUsing a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output. ResultsThe correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed. ConclusionsANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.