Abstract

Abstract The catalytic pyrolysis of pure microalgae (M), peanut shell wastes (PS) and their binary mixtures were analysed by introducing the microalgae ash (MA) as a catalyst. The pyrolysis processes were conducted at different heating rates from 10 K/min-100 K/min to observe their thermal degradation behaviour. Additionally, Artificial Neural Network (ANN) was applied by feeding the heating rates and temperatures to predict the weight loss of the samples. The kinetic and thermodynamic parameters were also determined through three different iso-conversional kinetic models: Friedman (FR), Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). Based on the kinetic results, FWO model achieved the lowest deviation between the activation energies (Ea) from the experimental which aligned with the ANN predicted results. The finding also shows that the activation energy (Ea) of the catalytic pyrolysis of binary mixtures was lower than the pure M and PS (Experimental: 142.56 kJ/mol; ANN forecast: 131.37 kJ/mol).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call