Abstract

In heavy commercial road vehicles, the air brake system is a critical vehicle safety system whose performance degradation increases the risk of accidents and hence requires periodic inspection and maintenance. The wear of brake pad lining and brake drum during operation leads to increase in the stroke of a component called pushrod whose ‘out-of-adjustment’ creates severe brake performance degradation. The fact that the driver does not receive a corresponding tactile feedback till it is too severe adds to the complexity of manual detection. Motivated by the increase in onboard sensing, electronics, and computation capabilities, this study proposes an artificial neural network–based approach to predict pushrod stroke based on measurement of brake chamber pressure. Here, a back propagation algorithm was used to train the multilayer feed-forward network. The effect of excessive pushrod stroke on vehicle braking response was first studied using a Hardware-in-Loop system that consists of brake system hardware and a commercial vehicle dynamics simulation software (IPG TruckMaker®). Experimental data collected from this system with manual slack adjuster and automatic slack adjuster have then been used to train and test the artificial neural network for pushrod stroke prediction. The performance of the prediction scheme has been tested over the entire range of brake operating conditions. The prediction error corresponding to manual slack adjuster was found to be within ±15% in 322 out of the entire test set of 328 instances (98.17%) and automatic slack adjuster within ±8% in all 57 test sets (100%). Statistical analysis based on confidence interval revealed a prediction error between −1.62% and −3.05% for manual slack adjuster and 0.43% and −1.62% for automatic slack adjuster for 99% confidence interval, which demonstrated the efficacy of the proposed prediction scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.