Abstract

Geotechnical structures, design of embankment, earth and rock fill dam, tunnels, and slope stability require further attention in determining the shear strength of soil and other parameters that govern the result. The shear strength of soil commonly obtained by conducting laboratory testing such as Unconfined Compression Strength (UCS) Test and Unconsolidated Undrained (UU) Test. However, random errors and systematic errors can occur during experimental works and caused the findings imprecise. Besides, the laboratory test also consuming a lot of time and some of them are quite costly. Therefore, soft computational tools are developed to improve the accuracy of the results and time effectively when compared to conventional method. In this study, Artificial Neural Network (ANN) was employed to develop a predictive model to correlate the moisture content (MC), liquid limit (LL), plastic limit (PL), and liquidity index (LI) of cohesive soil with the undrained shear strength of soil. A total of 10 databases was developed by using MATLAB 7.0 - matrix laboratory with 318 of UCS tests and 451 of UU tests which are collected from the verified site investigation (SI) report, respectively. All the SI reports collected were conducted in Sarawak, Malaysia. The datasets were split into ratio of 3:1:1 which is 60:20:20 (training: validation: testing) with one hidden layer and eight hidden neurons. The input parameter of Liquidity index (LI) has shown the highest R-value (regression coefficient) which are 0.926 and 0.904 for UCS and UU model, respectively. In addition, the predictive models were tested and compare with the predicted and observed cohesion obtained from the collected experimental results. In summary, the ANN has the feasibility to be used as a predictive tool in estimating the shear strength of the soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.