Abstract
Artificial neural network (ANN) and adaptive neuro–fuzzy interference system (ANFIS) were applied to model and analyze the adsorption of four different agro–wastes, namely sugarcane bagasse, passion fruit waste, orange peel and pineapple peel, and commercial activated carbon, for Ni2+ removal from aqueous solutions. The capacity of adsorption ranged from 14.75 to 63.50 mg g–1, and the results of the adsorption experiments revealed that sugarcane bagasse and orange peel presented the best adsorption performance for Ni2+ removal from aqueous solutions, even better than those of commercial activated carbon. The study also revealed that the adsorption capacity is affected by pHZPC and surface area. ANN and ANFIS were compared with the experimental data to determine the relationship of four input parameters on Ni2+ adsorption capacities: initial adsorbent concentration, adsorption time, pHZPC and surface area. The developed ANN and ANFIS could accurately predict the experimental data with correlation coefficient of 0.9926 and 0.9943, respectively. The Pearson's Chi–square measure was found to be 0.9508 for ANN and 0.5959 for ANFIS, indicating a small advantage of ANFIS over ANN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.