Abstract

Preferential oxidation (PROX) of 0.7–1 vol% CO was investigated using the stoichiometric amount of O 2 in excess hydrogen. Cobalt supported on SrCO 3 showed high selectivity to PROX of CO, and the new additive to the Co/SrCO 3 catalyst was investigated for the high tolerance towards CO 2 and H 2O. Representative 10 elements (B, K, Sc, Mn, Zn, Nb, Ag, Nd, Re, and Tl) were selected to represent the physicochemical properties of all elements suitable for additives of solid catalyst. A supported cobalt catalyst with one kind of the above additive was prepared for CO PROX reaction. The activities at 240 °C and the physicochemical properties of the 10 elements were used as training data of a radial basis function network (RBFN), a kind of artificial neural network. After the training, the RBFN predicted the catalytic performance of the supported catalyst containing various element X as Co–X/SrCO 3. The elements such as Bi, Ga, and In were predicted to be promising additives. Finally, the catalytic performance of these additives was experimentally verified. Sixty four percent of CO conversion and 70% selectivity for PROX at 240 °C was achieved in the presence of excess carbon dioxide and steam by Co 3.2–Bi 0.3 mol%/SrCO 3 pretreated at 345 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.