Abstract

AbstractArtificial nanomotors are nanoscale machines capable of converting surrounding other energy into mechanical motion and thus entering the tissues and cells of organisms. They hold great potential to revolutionize the diagnosis and treatment of diseases by actively targeting the lesion location, though there are many new challenges that arise with decreasing the size to nanoscale. This review summarizes and comments on the state‐of‐the‐art artificial nanomotors with advantages and limitations. It starts with the fabrication methods, including common physical vapor deposition and colloidal chemistry methods, followed by the locomotion characterization and motion manipulation. Then, the in vitro and in vivo biomedical applications are introduced in detail. The challenges and future prospects are discussed at the end.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.